14
Confounding and standardization

14.1 Confounding

Epidemiological studies generally involve comparing the outcome over a
period of time for groups of subjects experiencing different levels of expo-
sure. Such studies are usually not controlled experiments but ‘experiments
of nature’ of which the epidemiologist is a passive observer. In such in-
vestigations, there is always the possibility that an important influence on
the outcome, which would have been fixed in a controlled experiment, dif-
fers systematically between the comparison groups. It is then possible that
part of an apparent effect of exposure is due to these differences, and the
comparison of the exposure groups is said to be confounded. Statistical ap-
proaches to dealing with the problem of confounding aim to correct, during
analysis, for such deficiencies in the design of experiments of nature.

A particularly important potential confounding variable (or confounder
in many epidemiological studies is the age of subjects. We shall consider
an example in which subjects in a follow-up study are classified according
to whether their age at the start of follow-up was less than 55 years or 55
years or more. Suppose that the breakdown between the two age groups is
0.8 : 0.2 and that the conditional probability of failure is 0.1 in the first age
group and 0.3 in the second. When age is ignored the overall or marginal
probability of failure is

(0.8 0.1) + (0.2 x 0.3) = 0.14.

Now suppose that the age distribution differs between the two exposure
groups, being 0.8 : 0.2 in the not exposed group but 0.4 : 0.6 in the exposed
group (see Fig. 14.1). The marginal probability of failure for the unexposed
group is still :
(0.8 x 0.1) + (0.2 x 0.3) = 0.14,

but for the exposed group it is now
(0.4 x 0.1) + (0.6 x 0.3) = 0.22.

The marginal probabilities of failure now suggest an apparent effect of
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Fig. 14.1. Confounding by age.

exposure, but this is entirely due to the difference in age distributions
between the exposed and unexposed subjects.

In this example the apparent effect of exposure is entirely due to age
differences but confounding may also be partial, acting either to exaggerate
or to dilute a real relationship. As an example of this, suppose the effect of
exposure is to raise the probability of failure from 0.1 to 0.2 in the younger
age group and §rom 0.3 to 0.5 for older subjects. When the age distribution
is 0.8 : 0.2 in both exposure groups the overall effect of exposure is to
increase the marginal probability of failure from

(0.8 x0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.8 x0.2) + (0.2 x 0.5) = 0.26

in the exposed group. When the age distribution is 0.8 : 0.2 in the unex-
Posed group and 0.4 : 0.6 in the exposed group the overall effect of exposure
is to increase the marginal failure probability of failure from

(0.8 x 0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.4 x 0.2) + (0.6 x 0.5) = 0.38

in the exposed group. Thus the overall effect of exposure appears greater

—
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when the age distributions differ than when they are the same.

These examples demonstrate that a third variable, such as age, can dis-
tort the relationship between an exposure and failure provided it is related
to both exposure and failure. This dual relationship is often taken as the
definition of a confounder. However, although it is a necessary condition
for a variable to be a confounder, it is not sufficient: a confounder must
also be a variable which would have been held constant in a controlled ex-
periment. For example, in perinatal epidemiology, we might ask whether
birthweight could be regarded as confounding the relationship between the
receipt of proper antenatal care and the risk of perinatal death. Although
birthweight is related to both antenatal care and perinatal risk, it cannot
be regarded as a confounder since one of the results of successful antenatal
care should be adequate birthweights. Since it would not make sense to

envisage an experiment in which we varied the provision of antenatal care

while maintaining the distribution of birthweight constant, differences in
birthweight distribution cannot be regarded as a deficiency in the design
of the experiment of nature. It is not, therefore, a confounder.

14.2 Correction for confounding

The linking of confounding to an imaginary experiment helps to clarify the
ideas which lie behind statistical methods for dealing with the problem.
There are two rather different approaches, and these closely-mimic the
ways in which extraneous influences are dealt with in experimental science.

The classical approach to experimentation is to hold constant all influ-
ences other than the experimental variable(s) of interest. For example, to
avoid confounding by age, we would simply compare failure risks in exposed
and unexposed subjects of a fized age or, at least, falling within a narrow
range of ages. The statistical comparison would then be of failure prob-
abilities conditional upon age. The same comparison can be made in an
non-experimental study by the analytical strategy called stratification. By
dividing (or stratifying) the data according to age, the single experiment of
nature in which age has not been adequately controlled is transformed into
a series of smaller experiments within which age is closely controlled. The
analysis then compares probabilities of failure between exposure groups

within age bands. However, a consequence of this strategy is that individ- .

ual strata may contain too little data to be informative on their own. The
more finely we stratify the data, the more closely we control for confound-
ing, but the sparser our data becomes within strata. This impasse may
only be broken by making the further assumption -that the comparisons
estimate the same quantity within each stratum, and then combining the
information from the separate strata. We shall defer further discussion of
this approach to Chapter 15.

Holding extraneous variables constant is not the only model for good ex-
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perimentation, although it is certainly the most familiar. In the twentieth
century, experimentation has become a valuable tool in fields of study such
as biology, in which such close control of experimental material and con-
ditions is not possible. The idea of randomization has been central to this

development; if we cannot ensure that experimental groups are identical in
all important respects, then by assigning subjects to groups at random, we .

ensure that the probability distributions for extraneous variables do not
differ between exposure groups. Comparisons between the groups can then
be safely made. .

Returning to the comparison of failure probabilities between exposure
groups, it is rarely possible, in epidemiology, to use randomization to ensure
that extraneous variables have equal distributions in the different exposure
groups. However, it is possible to take account of differences in the dis-
tribution of a specific variable, such as age, by predicting the outcome for
exposure groups which have the same age distribution. This is done by
first estimating the age-specific probabilities of failure for each exposure
group, and then using these to predict the marginal probabilities of failure
for exposure groups which have a standard age distribution. This forms
the basis of the second statistical approach to dealing with confounding,
known in epidemiology as direct standardization.

14.3 Standardized rates

The remainder of this chapter concerns the use of direct standardization
to compare rates. Since rates are probabilities per unit time they can be
compared in the same way as failure probabilities. Age-specific failure rates
are estimated for each of the groups being compared, and these are used
to predict the marginal rates which would have been observed if the age
distributions in the comparison groups had begn the same as the standard
age distribution. These estimates are called standardized rates.

The choice of the age distribution to use for standardization depends
on the purpose of the analysis. It is quite common for the overall distribu-
tion of age, added over exposure groups, to be used as the standard, thus
simulating the results of an experiment in which the total study group was
randomly allocated between exposure categories. However, if one of ouy
aims is to facilitate comparisons with other published studies, it is more
useful to use an age distribution which is in general use. Several distribu-
tions are commonly used for this purpose. One is the age distribution of
the world population, another is the age distribution for developed coun-
tries. Since there is no ‘correct’ standard there is much to be said in favour
of using a uniform age distribution where the percentage falling in each
age group is the same. One advantage of using a uniform age distribution
is that the standardized rate is then directly proportional to the cumula-
tive rate for a subject experiencing the age-specific rates from the study
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Table 14.1. IHD incidence rates per 1000 person-years

Exposed : Unexposed
(< 2750 kcal) (= 2750 keal)
Age Cases P-yrs  Rate Cases P-yrs Rate
40-49 2 311.9 6.41 4 607.9  6.58
. 50-59 12 878.1 13.67 5 1272.1  3.93
60-69 14 667.5 20.97 8 888.9  9.00

Total 28 1857.5  15.07 17 27689  6.14

throughout life.

Direct standardization is most commonly used when comparing quite
large groups, such as the populations of different countries or regions. When
used with less extensive data it will yield statistically unreliable estimates
if some of the age-specific rates, although based on very few cases, receive
appreciable weight in the analysis.

To illustrate the technique of direct standardization we shall return to
study of ischaemic heart disease and energy intake, discussed in Chapter 13.
The incidence of ischaemic heart disease in the exposed group (low energy-
intake) is 15.1 per 1000 person-years while the rate in the unexposed group
is 6.1 per 1000 person-years. These rates, which take no account of any
possible confounding effect of age, are often referred to as crude rates to
distinguish them from standardized rates.

Table 14.1 shows the data stratified by 10-year age bands. The age
distribution is different in the two exposure groups; this may be seen by
converting the person-years to a proportion of the total person-years in each
group giving 0.168, 0.472, and 0.359 in the three age bands for the exposed
(low energy-intake) group and 0.210, 0.459, and 0.321 for the unexposed
(high energy-intake) group. These age differences might explain some of
the difference in the crude IHD incidence rates.

Using the uniform age distribution as standard, our estimate of the
marginal rate for a group of exposed subjects with a uniform age distribu-
tion is

(0.333 x 6.41) + (0.333 x 13.67) + (0.333 x 20.97) = 13.67

per 1000 person years and, for a group of unexposed subjects with a uniform
age distribution, it is

(0.333 x 6.58) + (0.333 x 3.93) + (0.333 x 9.00) = 6.50
per 1000 person-years. The standardized rates for the two groups are there-

fore 13.7 and 6.5 per 1000 person-years. These do not differ greatly from
the crude rates of 15.1 and 6.1 per 1000 person-years, showing that the
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confounding effect of age is small in this case.

Exercise 14.1. Find the standardized rates for the exposed and not exposed
groups using as standard the age distribution with probabilities of 0.2, 0.5, and
0.3 in the three age bands.

14.4 Approximating the log likelihood

When there are three age bands, as in the IHD and energy example, the
standardized rate parameter takes the form of a weighted sum of the age-
specific rate parameters,

WIN 4 W2AZ + W33,
where
AL AZ )3
are the rate parameters for the age bands and
wtw? w3

are the probabilities of the standard age distribution. Since A, % and
A% have independent log likelihoods, we can use the ideas introduced in
section 13.4 and Appendix C to derive a Gaussian approRimation to the
profile log likelihood for the standardized rate. The most likely value is

Wiml + w2mM? + wiMs3

where M! = D'/Y? is the most likely value of the age-specific rate pa-
rameter in band 1, and similarly expressions hold for bands 2 and 3. The
standard deviation of the Gaussian approximation is

VWIS 1 (W282)2 + (W353)2

where S = v/D!/Y! is the standard deviation of the Gaussian approxima-
tion to the log likelihood for A!, again with similar expressions for bands 2
and 3.

For the THD and energy example the proability weights are

wl=w?=w3=0.333.

The age-specific rate for the first age band of the exposed group is 6.41 and
the corresponding standard deviation is

V/2/311.9 = 0.00453,

or 4.53 per 1000 person-years. The most likely values for the rates in the
other two age bands are 13.67 and 20.97 with standard deviations 3.94 and

APPROXIMATING THE LOG LIKELIHOOD 139

5.61 per 1000 person-years. The standard deviation of the standardized
rate is therefore

/(0.333 x 4.53)2 + (0.333 x 3.94)2 + (0.333 x 5.61)2 = 2.74

per 1000 person-years.

Exercise 14.2. Show that the standard deviation of the standardized rate for
the unexposed group is 1.63 per 1000 person-years.

LOG TRANSFORMATION OF STANDARDIZED RATES

Just as for any other rate, Gaussian approximations to the log likelihood are
more accurate when related to the log of the standardized rate. The most
likely value on the log scale is, of course, just the log of the standardized
rate, and the corresponding standard deviation can be calculated by using
the rule described in Chapter 9. There we saw that the standard deviation
of the Gaussian approximation to the likelihood for log()) is obtained from
the standard deviation of the Gaussian approximation to the likelihood for
A by multiplying by 1/M, where M is most likely value of A\. It follows
that for the example of energy intake and IHD incidence, the standard
deviations of the standardized rates on a log scale are 2.74/13.67 = 0.200
and 1.63/6.50 = 0.251.

A simple extension of the same ideas allows us to calculate estimates
and confidence intervals for the ratio of two standardized rates. The log
of this ratio is equal to the difference between the logarithms of the two
standardized rates, and from section 13.4 and Appendix C the standard
deviation of the log of the ratio of the standardized rates is

1/(0.200)2 + (0.251)2 = 0.321.

This can be used to obtain a confidence interval for the ratio of the stan-
dardized rates by using the error factor

exp(1.645 x 0.321) = 1.696.

Exercise 14.3. Use this error factor to find an approximate 90% confidence
interval for the ratio of the two standardized rate parameters.
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Solutions to the exercises

14.1 The estimated standardized rates are
(0.2 % 6.41) + (0.5 x 13.67) + (0.3 x 20.97) = 14.41
for the exposed group, and
(0.2 x 6.58) + (0.5 x 3.93) + (0.3 x 9.00) = 5.98

for the unexposed group.

14.2 The standard deviations of the age-specific rates are 3.29, 1.76, and
3.18 respectively. The standard deviation of the standardized rate is

/(0.333 x 3.20)% + (0.333 x 1.76)2 + (0.333 x 3.18)% = 1.63.

14.3 The ratio of standardized rates is 13.67/6.50 = 2.10 and the 90%
range for this is from 2.10/1.696 = 1.24 to 2.10 x 1.696 = 3.56 .
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